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1. Phys.: Condens. Mmer 6 (1994) L173-L177. printed in the UK 

LETTER TO THE EDITOR 

The surface tension and Tolman's length of a drop 

M Iwamatsu 
Chiba-Keizai University, Junior College, 4-3-30 Todomki-cho, Chiba 263, Japan 

Received 4 February 1994 

Abstrad We examine the surface tensioo and Tolman's length of a spherical drop using the 
simplified Cahn-Hilliard model which has been used previously by the author 10 calculate the 
homogeneous nucleation rate. It is found that the Tolman's length is given by the difference of 
the bulk correlation lengths of the liquid and vapour phases and is negative for normal liquids. 
We discuss briefly the difficulty of estimating the Tolman's length from mmputer simulations. 

In a recent publication 113 (hereafter denoted paper I), we discussed the homogeneous 
nucleation rate of critical spherical drops using the simplified Cahn-Hilliard model [l-31. 
In this letter, we will discuss the magnitude of the Tolman's length [4] using the expression 
for the surface tension derived in paper I. 

In this model, the radius ro of the spherical nucleus is a function of the chemical potential 
A p  measured from the value at the two-phase coexistence (for a liquid drop A p  > 0, and 
for a vapour bubble Au < 0). The equation which determines the radius ro of a liquid drop 
is given by (see paper I, equations (2.13) and (2.14)) 

where the densities p, (i = 1, m, v) are functions of the chemical potential. Their definitions 
are given in paper I. We will use the same notation as paper I. AI and A, are the inverse bulk 
correlation lengths of liquid phase and vapour phase respectively. They are proportional to 
the isothennal compressibility. In our model they are the only parameters which characterize 
the bulk thermodynamics. In general, we have 

A, < A,. (2) 

The surface tension ys of the spherical drop with radius ro divided by the surface tension 
ym of the planar interface becomes (see paper I, equations (2.16) and (2.17)) 

At the (gas) spin& A p  = ApV, we have ys = 0 because pv = &, at this point. In the 
limit of planar interface ro 4 CO, A p  -+ Ot and hence pv 4 h.0, we have yJy, 4 1. 
For the weak supersaturation A p  4 O+, the radius diverges according to 

ro 4 (l/Av)(AcLv/Ap) (4) 
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hence, the surface tension (2) is given approximately by 

or, using the radius ro, by 

from which we see that the surface tension becomes a maximum at approximately the 
chemical potential 

(&lAILv)max 0 - v  - k)/2Av (7) 

or at the radius 

(ro)- = 2/(& - 11) (8) 

provided that Ap/ApLv << 1. From equation (5) the maximum value of ys/ya is given by 

because of the inequality (2). Therefore, as the chemical potential A p  increases from Ot. 
and the radius of the drop shrinks, the surface tension ys reaches a maximum greater than 
ym at the finite value of Ap. In a symmetric fluid with A, = AV, the surface tension ys 
reaches a maximum ym at exactly A p  = 0. In this special case the surface tension ys of a 
spherical drop is a monotonic decreasing function of A p  and is always lower than ym. 

As ro -+ 63, equation (6) becomes 

which is the so-called Tolman's formula [4]. From equation (6), Tolman's length 6 = 61,~ 
for the liquid drop is given by the difference of the correlation lengths of bulk as 

which is negative because of (2). In a symmetric fluid with AI = A,, 6b, 
which has k e n  proved by general argument in 151. 

according to 

0 from (1 I), 

When we approach the (gas) spinodal Ap 4 Ap;, the radius of the drop vanishes 

P " h +  P") 

Similarly the surface tension also vanishes 

Ym 
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So far, only the liquid drop formation has been considered. We can obtain similar 
formulae for a bubble by interchanging the subscripts 1 and g in the formulae for the drop. 
However, equation (S), for example, remains unchanged. Since the bubble A p  < 0, the 
surface tension of the bubble is always lower than the surface tension of the plane. Instead 
of equation ( l l ) ,  Tolman's length for the bubble is now given by 

which is always positive, and satisfies a relation 6 ~ ,  = -&. 
Since the Cahn-Hilliard model is equivalent to the Landau-Ginzburg model, the above 

result for Tolman's length can also be derived directly from a general formula for the latter 
model [5]: 

where pA(z) = dpa(z) jdz is the derivative of the density profile of the flat interface. With 
the density profile po(z) - exp(q1z) (z < 0) and po(z) - exp(-qgz) (z > 0) from this 
doubleparabola approximation, we can directly calculate equation (11). Fisher and Wortis 
[5] have estimated Tolman's length of drop using the Landau-type density expansion of 
the free energy near the critical point and have shown that it is related to the fifth-order 
expansion coefficient. They have applied this result to a van der Waals fluid and predicted 
a negative Tolman's length. 

In figures 1 and 2, we show the ratio yJy, as functions of the chemical potential 
Ap(,3) and the radius ro (no = Alro) of a drop or a bubble; ,3 > 0 represents a drop and 
,3 c 0 a bubble. We have followed paper I and defined non-dimensional parameters (Y and 
B a s  

where 

APQ = no - h.0 

2 j A  = 1/4  i- l / iv .  

We note that (Y < 1 because of inequality (2). 
Figures 1 and 2 (right portions) display non-monotonic behaviour approximately 

described by the quadratic equations (5) and (6). Such non-monotony has already been 
discovered in the local density-functional theories [6,7] numerically (see e.g. figure 5 of 
[7]). Since Tolman's length is given by the difference of two bulk correlation lengths in 
(11). it is obvious from ow analysis that such non-monotony is more remarkable when the 
parameter (Y = A& is smaller (figure 1 and 2), or the asymmetry between bulk liquid 
and vapour phases is larger. This tendency is also visible in a recent density-functional 
calculation of a liquid drop in a spherical cavity using the more sophisticated weighted- 
density approximation (WDA) (see figure 3(a) of [SI). It is also clear from figure 1 that the 
series expansion (5) is fairly accurate. 



L176 Letter to the Ediror 

Figure 1. The surface tension yI divided by ym as 
a function of supersaturation 6 (-), compared with 
the approximate quadratic polynomial (5) (- - -). This 
figure is essentially the same as figure 5 of paper I .  Note 
that in a normal fluid with U c I. y, becomes greater 
thm ym. The polynomial ( 5 )  is faiay accurate over fhe 
whole range of supersaturation. 

Figure 2 The surface tension y’ divided by ym 
as a h c t i o n  of Lhe inverse of lhe radius XQ (-), 
compared with (6) (- - -). Tolmm’s formula (IO) is 
valid only in the limit 1l.q -+ 0. 

In contrast with the liquid drop, the surface tension of the vapour bubble is always 
lower than the surface tension of the flat interface (left portions of figures 1 and 2), and 
decreases monotonically (figure 1). 

For a sufficiently large radius ro, the surface tension yr of a drop is given by the 
Tolman’s [4] formula (IO), and Tolman’s length 6 becomes negative (atq < 0). However, 
for a smalIer radius (larger l/x~), the surface tension y. becomes lower than ym of the 
flat interface (figure 2). From the curve in this region one might erroneously conclude 
that the Tolman’s length is posirive (ab, t 0). Furthermore, it is clear from figure 2 that 
the region where the surface tension ys exceeds ym. and the apparent length St, becomes 
negative, is rather narrow on the scale l/xo. Therefore, it  might be difficult to extract 
a true negative Tolman’s length from a diagram like figure 2 numerically by computer 
simulations. In fact. a few molecular-dynamics simulations have been performed for the 
liquid drop with the truncated Lennard-Jones potential using both the canonical ensemble 
191 and the grand canonical ensemble [IO,ll], but all these calculations indicate only a 
small positive Tolman’s length. 

It is possible to estimate numerically the magnitude of the Tolman’s length Stis in our 
model once we know the inverse correlation length AI and A,. If the fluid is a van der Waals 
fluid, from equation (l l) ,  Tolman’s length, for example. at T = 0.8Tc (T, is the critical 
temperature) becomes 

6aq -0.38d (17) 

where d is the hard-sphere diameter, and we have used A;’ = 1.73d and A;’ = 0.97d. 
therefore (Y N 0.56, at this temperature [13]. This value (17) is close to Sliq = -0.3df0.9d 
deduced by Nijmeijer el al [ 111 using the molecular dynamics for a truncated Lennard-Jones 
system at T* = 0.9 close to T = 0.8T, (the critical point is Tz Y 1.09 on this scale). Their 
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conclusion IS1iqI < 0.7d is consistent with our result. This negative value (17) is also close 
to the theoretical value Sfiq = -0.35d calculated by Guermeur et a1 [7] using the local 
squaregradient model, and is also close to the value published by Hemingway er ol 1141 
for the penetrable-sphere model. 

In this letter, we have used the simplified Cahn-Hilliard model to discuss the surface 
tension and Tolman’s length of a spherical drop. The surface tension becomes an 
approximate quadratic function of the chemical potential. Tolman’s length is given by 
the difference of the correlation lengths of two bulk phases, and is shown to be negative. 
This result will be useful to estimate roughly the magnitude of Tolman’s length. 

The author is grateful to Professor David W Oxtoby (University of Chicago) for providing 
him with reference [3]  prior to publication. 
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